On the generalized principal ideal theorem and Krull domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

A Generalized Principal Ideal Theorem

KrulΓs principal ideal theorm [Krull] states that q elements in the maximal ideal of a local noetherian ring generate an ideal whose minimal components are all of height at most q. Writing R for the ring, we may consider the q elements, x19 , xq say, as coordinates of an element xeR. It is an easy observation that every homomorphism R —> R carries x to an element of the ideal generated by xi9 ,...

متن کامل

generalized principal ideal theorem for modules

the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.

متن کامل

On the generalized principal ideal theorem of complex multiplication

In the p-th cyclotomic field Qpn , p a prime number, n ∈ N, the prime p is totally ramified and the only ideal above p is generated by ωn = ζpn − 1, with the primitive p-th root of unity ζpn = e 2πi pn . Moreover these numbers represent a norm coherent set, i.e. NQpn+1/Qpn(ωn+1) = ωn. It is the aim of this article to establish a similar result for the ray class field Kpn of conductor p over an ...

متن کامل

Principal Ideal Domains

Last week, Ari taught you about one kind of “simple” (in the nontechnical sense) ring, specifically semisimple rings. These have the property that every module splits as a direct sum of simple modules (in the technical sense). This week, we’ll look at a rather different kind of ring, namely a principal ideal domain, or PID. These rings, like semisimple rings, have the property that every (finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1990

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1990.146.201